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Tunneling conductance of a two-dimensional electron gas with Rashba spin-orbit coupling
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We theoretically studied the in-plane tunneling spectroscopy of the hybrid structure composed of a metal and
a two-dimensional electron gas with Rashba spin-orbit coupling. We found that the energy spacing between
two distinct features in the conductance spectrum can be used to directly measure the Rashba energy. We also
considered the effect that varying the probability of spin-conserving and spin-flip scattering at the interface has
on the overall conductance. Surprisingly, an increase in interface scattering probability can actually result in
increased conductance under certain conditions. Particularly, in the tunneling regime, an increase in spin-flip
scattering probability enhances the conductance. It is also found that the interfacial scattering greatly affects
the spin polarization of the conductance in metal, but hardly affects that in the Rashba system.
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I. INTRODUCTION

Structural inversion asymmetry of the confining electro-
static potential results in an intrinsic spin-orbit coupling of
electrons in a two-dimensional (2D) electron gas (EG),
which can be described by the Rashba Hamiltonian:'~3

ﬁZ

om*

H= N - (p X ), (1)

where p is 2D momentum, /" is the electron effective mass,

f' is the direction perpendicular to the plane of motion, \ is
the spin-orbit coupling parameter, which can be tuned by
applying an external gate voltage perpendicular to the 2D
plane, and the components of ¢ are the Pauli spin matrices.
The spin-orbit interaction lifts the spin degeneracy and
causes the original parabolic energy spectrum to split into
two branches: E,;,t:% * fiikk, where k is the magnitude of
the wave vector. The density of states of this system is the
same as that of the 2D free-electron gas for all energies
higher than the crossing point of the two branches. However,
at the bottom of the band, the density of states has E~'2 Van
Hove singularity because the minus branch has an annular
minimum for k=ky=m"\/# instead of a single-point mini-
mum as in the free-electron gas. These properties lead to
interesting phenomena, like the spin Hall effect (see, e.g.,
Ref. 4 for a review), and to applications in spintronics (see,
e.g., Ref. 5 for a review).

The Rashba effect has been seen in many systems such as
semiconductors, semiconductor heterostructures, and surface
alloys. Several techniques have been used to study the spin-
split states in these systems, for example, electron spin reso-
nance, the Shubnikov—de Haas oscillations, angle-resolved
photoemission, and scanning tunneling spectroscopy. Elec-
tron spin resonance was one of the first techniques to confirm
the existence of the Rashba spin-split states in bulk semicon-
ductors with the absence of inversion symmetry in the crystal
structure.®” From magnetotransmission of far-infrared radia-
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tion, electron spin resonance signal can be detected and used
to obtain the Rashba parameter.

The Shubnikov—de Haas oscillations®” is another tech-
nique used to measure the Rashba parameter in semiconduc-
tor systems. The presence of the spin splitting at the Fermi
energy leads to beating in the oscillations and the Rashba
energy can be deduced from the position of the beating node.
However, this technique tends to provide an overestimate of
the Rashba energy, because it is done in the presence of
magnetic field and hence includes the effect of the Zeeman
spin splitting.'®

Angle-resolved photoemission spectroscopy and scanning
tunneling microscopy are used in surface alloys. The former
technique is utilized mainly to obtain the energy dispersion
and the Fermi surface map, from which the effective mass,
the magnitude of the band splitting, and hence the Rashba
spin-orbit coupling energy, E,=#%k;/(2m*), can be
extracted.!!'"1> In the latter technique, the electric current is
driven through a sharp tip perpendicular to the 2D plane and
the differential conductance (dI/dV) spectrum can be ob-
tained. One can deduce the Rashba energy by fitting the
dl/dV spectrum to the local density of states of the two-
dimensional electron gas (2DEG).!'® In both cases, to obtain
information about the Rashba spin-orbit coupling, extensive
data fitting is needed.

In this paper, we propose a way to measure the spin-
splitting energy more directly from experimental data, using
in-plane tunneling spectroscopy. In this technique, the
Rashba energy equals the energy difference between two fea-
tures in the conductance spectrum. The required condition
for the measurement is that the energy resolution of the tun-
neling spectra is at least of the order of the Rashba energy
itself. This condition can be easily achieved in modern tun-
neling measurements. '’

An intriguing property of 2DEG with Rashba spin-orbit
interaction is spin-dependent transport. Many theoretical in-
vestigations have shown that both electric and spin transport
in hybrid structures between the Rashba system (RS) and
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various materials, such as metals,'8-% ferromagnets,?*->3 and

superconductors,?* are affected by the strength of the
spin-orbit coupling,'®2* the inequality of the effective
masses,'®1%2223 and the transparency of the interface.?!?>24
However, in these previous studies, only spin-conserving in-
terfacial scattering was considered.

In principle, one can introduce interfacial spin-flip scatter-
ing in these systems by embedding magnetic impurities in
the insulating layer, or at the interface. The interaction be-
tween the tunneling electrons and localized spins can give
rise to spin-flip tunneling.?>-?° The equations describing the
spin-up and spin-down spin states in the presence of spin-flip
scattering are coupled, and one expects interesting conse-
quences of this. For instance, in the study of the tunneling
conductance spectrum of a semiconductor or superconductor
junction,*® the non-spin-flip scattering, when present alone,
is found to suppress the Andreev reflection process and
hence the subgap conductance as expected. However, when
the spin-flip potential scattering is also present at the inter-
face, their combined effect surprisingly enhances the subgap
conductance.*

Here, we also consider how the scattering potential barrier
affects both the conductance spectrum and the spin polariza-
tion of the conductance of a junction consisting of a metal
and a Rashba system. As in previous work by Zutic and Das
Sarma,’® we find that the conductance spectrum, which is
usually suppressed in the presence of the interfacial scatter-
ing, can be enhanced by the combined effect of both types of
scattering. We also find that the spin polarizations of conduc-
tance of the metal and the Rashba system are not equal. The
spin polarization in the latter depends weakly on interfacial
scattering, while that in the former is greatly affected. This
suggests that a spin imbalance in the Rashba system is robust
against variation in the quality of the junction interface.

This paper is organized as follows. In Sec. II, we describe
the theoretical method and assumptions. In Sec. III, we pro-
vide the results and discussion. Our conclusions are pre-
sented in Sec. IV.

II. METHOD OF CALCULATION AND ASSUMPTIONS

We represent our junction by an infinite 2D system which
lies on xz plane, where the metal and the Rashba system
occupy the x<<0 and x>0 region, respectively. The two re-
gions are separated by a flat interface at x=0. The interfacial
scattering is modeled by a Dirac delta-function potential.3!
We consider ballistic transport in our junction. In the one-
band effective-mass approximation, we describe our system
by the following Hamiltonian:

H= (ﬁ;ﬁ+ V(x,z)>I+ He(x). (2)
2m(x)

Each term is the 2X2 matrix acting on spinor states, p
=—iﬁ(£% +2j’z). The effective mass m(x) is position depen-
dent; i. e., [m(x)] '=m™'O(-x)+ (m*)~'O(x), where m and
m* are effective electron masses in the metal and the Rashba
system, respectively, and O (x) is the Heaviside step function.
V(x,z) is also a position-dependent function and is modeled

by the expression
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FIG. 1. The top sketches are the energy contours of the electron
in the metal (left) and the Rashba system (right). The angles 6 and
¢ are defined as those between the x axis and the momenta of
electrons in the metal and the Rashba system, respectively. The
dashed line that crosses both sides shows the momentum states with
the same k.. The dotted line is the line of the maximum value of k_,
which defines the maximum incident angle 6,,. The lower sketches
are the corresponding energy spectra (E vs the magnitude of mo-
mentum). E and E; are the metal Fermi energy and the off-set
energy of the Rashba system, respectively.

V(x,z) = H8(x) + EyO(x) — EzO(-x), (3)

where H represents the scattering potential at the interface,
E, is the energy difference between the Fermi level and the
bottom of the plus branch (see Fig. 1), and Ep=h’q7/(2m) is
the Fermi energy of the metal. We assume that E, is much
larger than Ej,. The diagonal elements of H, Hy;, and H||
correspond to the non-spin-flip scattering potential character-
izing the quality of the junction, while H; =H ; describe
spin-flip scattering.>* The Rashba Hamiltonian is written as

Ho) =2 NG X D)+ (G X AD], @

where \(x)=\O(x).

From the Hamiltonian, one can obtain the eigenstates and
eigenenergy for the electrons in each region as follows. In
the x <0 region, the energy spectrum is

ﬁ2 2
E(q)= 2—" —Ep, 5)
m

where g= \rq§+q§ is the magnitude of the 2D momentum of

the electrons. In the x >0 region, the eigenenergy is obtained
as

2

E*(k) = =—[(k = ko)* - kg + Eq, (6)

2m"*

where k= V’ki+k§ is the magnitude of the 2D momentum and
ko=m*\/fh. Figure 1 shows the energy spectra and energy
contours of the excitations in both sides of the junction.
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The wave function of the electrons with energy E in the
metal is written as a linear combination of incident momen-
tum state and a reflected state of the same energy and k..
Because electron spins are not polarized in metal, there are
two equally likely incident spin states, opposite in direction
to each other, with the spin quantization axis arbitrary. Any
choice of two incident states with opposite spin orientations
will lead to the same result for total conductance spectrum.
Here, for simplicity we choose the spins of the incident elec-
trons be along the z axis. The two corresponding electron
wave functions in the metal are written as

(1] . _b 1 . .
V) (x,2) = ( ety |1 e‘”ﬁ")e’klz,
_0 1 _bll
_0 1 . _b 1 . .
\Pgé)(X,Z) — ( ol 4 21 e—zq)x)ezkzz’ (7)
L1 L by

where the b;, are the amplitudes of reflection of electrons
with spin ¢ for incident state with spin up (i=1) and spin
down (i=2). g,=¢ cos 6 and k.=q sin 6, where 0 is the angle
between ¢ and the x axis. The magnitude of the momentum,
¢, depends on energy as

2
g= \/ﬁ—T(E+EF). (8)

Similarly, in the Rashba system, the wave function is ob-
tained as a linear combination of two outgoing eigenstates of
the same energy and k.

P+
cos—

R — o+
Vwa = e
P+

sin—
2

COS——

where i=1,2 refer to the wave functions of the Rashba sys-
tem corresponding to the two cases of spin orientations of
incident electrons, ¢+ are the angles between k* and the x
axis. For E>E), c;, and c,_ are the transmission amplitudes
of electrons to plus and minus branches, respectively. When
E<E,, c;, and c;_ refer to the transmission amplitudes of
electrons to states with smaller and larger k of the minus
branch, respectively. The upper and lower signs in the first
term of Eq. (9) are for E<E, and E>E,, respectively. k;
=k* cos ¢+ and k.=k™ sin ¢;=, where the magnitudes of the
momenta, k=, depend on energy as

It
K =ko+ \[K2 + ﬁ—n;(E—EO), (10)
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k= t(ko—\/k3+2ﬁ—nf(E—E0)>. (11)

Again, in Eq. (11) the upper and lower signs are for E<E,
and E > E, respectively. The relationship between the angles
¢+ and 6 is

k* sin @+ = g sin 6. (12)
We can obtain the probability amplitudes b;, b;), c¢;,, and

c¢;_ from the following matching conditions that ensure prob-

ability conservation:?

Ve =0,2) = Wi(r=0,2) = ¥, (13)

(ﬁ IVRE aqf(g)
m* dx ox

_ _.m (i)
=\2qpZ —i—kyo, |Vy,
x=0 m
(14)

where Z=mH/(#i’qy). The diagonal elements of Z will
henceforth be referred to as Z,=Z7;, and Z,=Z, |, while the
off-diagonal element will be denoted by Zp=Z; =Z;. In
what follows the spin-flip term Z; will be responsible for the
enhancement of a feature at the branch-crossing point in the
conductance spectrum.

The particle current density along the x direction is ob-
tained from

7= HE 00,9 (x) + [6,2(0) 1P ()}, (15)

where W(x) is the spinor wave function, and 0,=dx/dt
=i[H(x),£]/%. From the current density, the reflection and
transmission probabilities can be obtained as follows:

RiT=|biT 2, (16)
Ril=|bil 2, (17)
— 7+
m Fk, + kg cos @it
7= —*|ci+|2<—>, (19)
m qx
k. — ko cos ¢~
T - %w(—* .9
m qx

where R;; and R;| are the reflection probabilities to spin-up
and spin-down states and T}, and 7,_ are the corresponding
transmission probabilities. Also, the upper and lower signs in
T;, are for E=E, and E>E, respectively. As mentioned
earlier, the matching conditions ensure that R;;+R; +T;,
+T,_=1.

Since the electric current is independent of x, we consider
the electric current density in the metal for simplicity. It can
be written as a function of applied voltage V as follows:

2
JeV)= X ev, > (1-R;—R;)

q,>0.,q, i=1

X A{flE(q) - eV]- flE()]}, (20)

where e is the electron charge, v, is the x component of the
electron group velocity, and f(E) is Fermi distribution func-
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tion. The sum over the spins of incident electron assumes
that both are equally probable in metal.

By changing the integration variable and setting tempera-
ture to zero for simplicity, one can obtain the expression for
the electric current as

EZ eV 0,
fevy= 2L f dE f dcos 6
0 -6,

h 2

2
E
X 1+_E (1_RiT_Ril)’ (21)
Eris

where £? is the area of the metal and 6, is the maximum
angle of the incident electrons from the metal (see Fig. 1):
6,,=sin"'[k"(E)/q(E)]. Thus, the differential conductance
G(V)=dji/dV at zero temperature is

2£2q O, % 2
G(v) == Ff décos 0 1+Z—E(1—R”—Ril),
=6, Fi=1

m

(22)

The finite temperature will smear the features in the conduc-
tance spectrum but will not change their positions (assuming
that the strength of the Rashba spin-orbit coupling does not
depend on temperature).

It is of interest to determine the spin current across the
junction and its dependence on model parameters. However,
the appropriate definition of the spin current in a Rashba
system is still a matter of debate.’3>7 Here we calculate a
simpler, intuitive quantity, which we call the spin polariza-
tion of conductance. Our aim is to illustrate the main features
of spin-dependent tunneling conductance without entering
the controversy over the spin current. The spin polarization
of the conductance P(E) is defined as the difference in the
number of spin carriers crossing a plane normal to x in unit
time, normalized to the total particle current at energy E,

1o, .
E Q,T —]g,l)
Q)r>0’q2
. . ’
2 (151 +J§,l)

q,>0.q;

P(E) = (23)

where j¥  is the particle current density with spin o. The >’
indicates that the summations are over g,, g, with a specific
value of energy E. In metal, this spin polarization of the
conductance can be written in terms of the reflection prob-
abilities as

0, 2
f d6 cos 6, (- R +R;)
-0, i=1
PulE)=—, 2 , (24)
dfcos 6, (1-R;;—R;))
-0, i=1

m

and in the Rashba system it can be written in terms of the
transmission probabilities as
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FIG. 2. (Color online) The plot on the left is the conductance
spectrum in the case where the energy band of the Rashba system is
partly occupied (Ey=-0.075E) and on the right is the plot in the
case where the band is unoccupied (Ey=0.05Ef). The derivative of
the conductance spectrum on the right (dG/dV) is shown in the
inset. Z and Zy are set equal to zero. m/m*=10 and ky,=0.05¢q.

O 2
J df cos 6, (T;, cos @ — T cos @)
-4, i=1

PRS(E) = - P B
f do cos 6, (T +T;)

-0, i=1

m

(25)

As can be seen, P(E) measures the relative difference in the
net number of the carriers with spin up and spin down. It
should be pointed out that in metal P(E) is proportional to
the conventional spin (S.) current in the +x direction, j

=Re{¢/3(v,S.+S.0,) ¥}

III. RESULTS AND DISCUSSION

In this section, we discuss the effect of the interfacial
scattering on the differential conductance spectra and the
spin polarization of the conductance on each side of the junc-
tion. In all plots, for the purpose of illustration, we set
m/m*=10 and ky,=0.05¢, which corresponds to typical ex-
perimental values in metal or Rashba system junctions. The
main results are not affected by the choice of these param-
eters.

Two conductance plots for two values of E are shown in
Fig. 2. Positive values of E, means the energy spectrum of
the Rashba system is unoccupied and the positive eV across
the junction will cause the current to flow from the metal to
the Rashba system. As can be seen, when the energy spec-
trum of the Rashba system is partly occupied (E)=
—0.075Ep), the results are identical in shape to those in the
unoccupied case (Ey=+0.05Ef), but the applied voltage eV
across the junction has to be negative. There are two main
features at the voltage corresponding to the bottom and the
branch crossing of the energy band. The distance between
them depends on E,, which is the quantity of interest. The
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value of E| is not important; i.e., changing E|, causes a rigid
shift in energy, and will henceforth be set equal to zero.

We do not consider the spin-filtering interface. That is, we
set the non-spin-flip scattering strength Z,=Z,=Z7. It is well
known that the difference in Z, and Z; will cause a spin-
filtering effect. That is, a higher Z, will make the transport of
the spin-up electrons less favorable and vice versa. This ef-
fect cannot be seen in the conductance spectrum and will not
be considered in this paper.

A. Differential conductance spectra

In all conductance plots, the conductance is in units of
e’L2qp/(2mh). The conductance spectra G with different Z
in different limits of Z are shown in Fig. 3. Junctions with
metallic contacts are characterized by Z<< 1, whereas those in
the tunneling limit are characterized by Z=1. In general, the
conductance is zero until the applied voltage reaches eV
=-E,, which is the bottom of the band of the Rashba system.
The conductance increases suddenly with large initial slope
that decreases steadily until a second feature: the kink occur-
ring at eV=0, which is the crossing point of the two branches
of the band. After this point, the conductance increases ap-
proximately linearly. In the presence of Zp, there occurs a
discontinuity in the conductance at ¢V=0. The height of the
jump depends on both Z and Zp. This energy difference be-
tween the onset and the discontinuity in the slope of the
conductance spectrum can be used to determine directly the
Rashba energy E,. Note that this conclusion is not an artifact
of this simple model (delta-function interface scattering,
etc.). It should be generically true, because it is due to
switching from transmission of electrons into only the —
branch to transmission of electrons into both branches of the
Rashba system.

In addition to the influence on the discontinuity at eV=0,
the interfacial scattering affects the overall conductance
spectrum as well. For metallic contacts, the spin-flip scatter-
ing suppresses the conductance as expected. However, in the
intermediate and the tunneling limits, the results are rather
surprising. As can be seen in Fig. 3(b) when Z=0.5, the
increase in Z from zero to a small value (less than 0.5) does
not affect the conductance much. Only when Z is increased
beyond 0.5 does the conductance get suppressed. When Z is
high, e.g., Z=2.0 as in Fig. 3(c), the conductance spectrum
can be enhanced by the increase in Zy up to a value Zy, after
which the spectrum becomes suppressed. Zj. is found to de-
pend strongly on Z.

One can see the effect on the conductance spectrum of
spin-flip scattering more clearly by considering plots of the
conductance G as a function of Z; for energies just below
and just above 0. In Fig. 4, GS=G(-6) and G~ =G(+9),
where 6/ E,=0.8, are plotted as a function of Z for different
values of Z. For small Z, both G~ and G decrease with Z
as expected. However, this trend starts to change when Z is
higher than 0.5. That is, both G~ and G~ increase with Z
and reach a maximum value at Z}. (as indicated by arrows in
Fig. 4), after which they decrease with Z. Notice that Zj. is
a little smaller for G= than for G~ and is approximately
equal to Z. It should be noted that a similar dependence of
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FIG. 3. (Color online) Differential conductance spectra G for
different Z in the case where (a) Z=0, (b) Z=0.5, and (c) Z=2.0.

both G~ and G= on Z can also be seen, if one plots G~ and
G= as a function of Z instead.

B. Spin polarization of conductance

The plots of the spin polarizations of the conductance in
both metal and Rashba system as a function of energy are
shown in Fig. 5. The spin polarizations of the conductance of
the two sides are very different. In Rashba system, it is al-
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FIG. 4. Differential conductance G(eV) plotted as a function of
the spin-flip barrier height Z at a constant energy eV slightly below
[upper panel, denoted by G=(Z)] and slightly above [lower panel,
denoted by G~ (Zg)] the energy corresponding to the crossing of the
Rashba-split bands. The arrows indicate the values of Z;, where the
maximum differential conductances G~ and G~ occur, for Z=1.0
(thick arrows) and 2.0 (dashed-dotted arrows).

ways negative, whereas in the metal it is positive when the
spin-flip scattering is not strong. This may be understood by
considering the density of states of the Rashba system.

The density of states of the minus branch is larger than
that of the plus branch. As we can see from Fig. 6, because
the spins of the transmitted states of the minus branch are
mostly pointing down, it is not surprising that the spin po-
larization of the conductance in the Rashba system is nega-
tive. As for the metal side, because more spin-down states
are transmitted into the Rashba system, the spin polarization
of the conductance is positive.

The interfacial scattering does not affect the spin polariza-
tion of the conductance in the Rashba system as much as in
the metal. The increase in either Z or Z seems to slightly
change the magnitude of the spin polarization of the conduc-
tance. However, in metal the interfacial scattering potential
affects the spin polarization of the conductance a great deal.
For a particular value of Z, the increase in Zy can cause the
spin polarization of the conductance in metal to change sign.

IV. CONCLUSIONS

According to the results from our simple model, one can
directly use in-plane tunneling conductance spectrum to
measure the Rashba energy of a system with the Rashba
spin-orbit coupling. The energy difference between the onset
and the discontinuity in slope of the conductance spectrum is
equal to the Rashba energy. Both features are found to be
robust against variation in the quality of the junction.

Experimentally, to be able to measure the Rashba energy,
the required energy resolution is at least of the order of the
Rashba energy itself and the temperature is low enough in
order that both features are visible. The Rashba energies in
semiconductor-based heterostructures such as InAs, InGaAs,
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FIG. 5. The plots of the spin polarization of the conductance in
metal and RS as a function of energy when Z is (a) 0 and (b) 0.5.

—branch|

DOS

- branch

+ branch

E

FIG. 6. Density of states of each branch of the 2DEG with the
Rashba spin-orbit coupling. The contour plots on the left and on the
right are those in the case where E<E, and E> E|, respectively.
When E> E,, the outer contour is that of — branch and the inner
one is that of + branch. When E <E,, both energy contours belong
to the — branch. The arrows represent the spin direction of the states
with positive v,.
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GaN, and InSb are of order 1-3 meV,?® % whereas those of
surface alloys like Li/W(110), Pb/Ag(111), and Bi/Ag(111)
can be as large as 200 meV.!%46-48 These conditions can be
readily met in modern tunneling measurements.'”

We also found that as the current is driven through the
system, an imbalance of spin in both sides occurs. The spin
polarization of the conductance in the metal is found to de-
pend strongly on both types of the interfacial scattering and
can disappear when the barrier is in the tunneling regimes.
On the contrary, in the Rashba system the spin polarization
of the conductance is always present and only slightly af-
fected by interfacial scattering. This finding suggests that the
spin imbalance caused by current flow in the system with the

PHYSICAL REVIEW B 78, 155317 (2008)

Rashba spin-orbit coupling is robust against variation in the
quality of the junction as well.
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